上海大学核心数学研究所——几何与分析综合报告第6讲 Gromov-Hausdorff Limit of Riemannian manifolds with Ricci Curvature bounds

创建时间:  2022/06/01  龚惠英   浏览次数:   返回

报告题目 (Title):Gromov-Hausdorff Limit of Riemannian manifolds with Ricci Curvature bounds

报告人 (Speaker):江文帅 副教授(浙江大学)

报告时间 (Time):2022年6月1日(周三) 10:30-11:30

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The Gromov-Hausdorff distance is a distance bewteen metric spaces. By Gromov’s compactness theorem, any sequence of Riemannian manifolds with uniform Ricci curvature lower bound has a converging subsequence in Gromov-Hausdorff sense to a limit metric space. In this survey talk, we will first introduce the study of Gromov-Hausdorff convergence on manifolds. Then we will discuss some progress on the study of the limit metric space.

上一条:数学学科Seminar第2250讲 多边形网格上不可压缩的Navier-Stokes方程的稳健不连续Galerkin方法

下一条:数学学科Seminar第2249讲 Sheaves of sets on atomic sites and Schanuel topos


上海大学核心数学研究所——几何与分析综合报告第6讲 Gromov-Hausdorff Limit of Riemannian manifolds with Ricci Curvature bounds

创建时间:  2022/06/01  龚惠英   浏览次数:   返回

报告题目 (Title):Gromov-Hausdorff Limit of Riemannian manifolds with Ricci Curvature bounds

报告人 (Speaker):江文帅 副教授(浙江大学)

报告时间 (Time):2022年6月1日(周三) 10:30-11:30

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The Gromov-Hausdorff distance is a distance bewteen metric spaces. By Gromov’s compactness theorem, any sequence of Riemannian manifolds with uniform Ricci curvature lower bound has a converging subsequence in Gromov-Hausdorff sense to a limit metric space. In this survey talk, we will first introduce the study of Gromov-Hausdorff convergence on manifolds. Then we will discuss some progress on the study of the limit metric space.

上一条:数学学科Seminar第2250讲 多边形网格上不可压缩的Navier-Stokes方程的稳健不连续Galerkin方法

下一条:数学学科Seminar第2249讲 Sheaves of sets on atomic sites and Schanuel topos