上海大学核心数学研究所——几何与分析综合报告第3讲 On the Lp-Minkowski problem with super-critical exponents

创建时间:  2022/05/06  龚惠英   浏览次数:   返回

报告题目 (Title):On the Lp-Minkowski problem with super-critical exponents

报告人 (Speaker):李奇睿 教授(浙江大学)

报告时间 (Time):2021年5月6日(周五) 10:00-11:00

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The Lp-Minkowski problem deals with the existence of closed convex hypersurface with prescribed p-area measure. It was known that the problem admits a solution in sub-critical case p>-n-1 and does not have a solution in general in the critical case p=-n-1. But it remains unknown in the super-critical case p<-n-1. In this talk, we introduce new ideas to solve the problem for all super-critical exponents. A crucial ingredient in the proof is a topological method based on the calculation of the homology of a topological space of ellipsoids. The talk is based on recent joint work with Qiang Guang and Xu-Jia Wang.

上一条:数学学科Seminar第2244讲 最优传输,耦合与概率距离

下一条:数学学科Seminar第2243讲 高能爆炸后冲击波传播的数值模拟


上海大学核心数学研究所——几何与分析综合报告第3讲 On the Lp-Minkowski problem with super-critical exponents

创建时间:  2022/05/06  龚惠英   浏览次数:   返回

报告题目 (Title):On the Lp-Minkowski problem with super-critical exponents

报告人 (Speaker):李奇睿 教授(浙江大学)

报告时间 (Time):2021年5月6日(周五) 10:00-11:00

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯

主办部门:理学院数学系

报告摘要:The Lp-Minkowski problem deals with the existence of closed convex hypersurface with prescribed p-area measure. It was known that the problem admits a solution in sub-critical case p>-n-1 and does not have a solution in general in the critical case p=-n-1. But it remains unknown in the super-critical case p<-n-1. In this talk, we introduce new ideas to solve the problem for all super-critical exponents. A crucial ingredient in the proof is a topological method based on the calculation of the homology of a topological space of ellipsoids. The talk is based on recent joint work with Qiang Guang and Xu-Jia Wang.

上一条:数学学科Seminar第2244讲 最优传输,耦合与概率距离

下一条:数学学科Seminar第2243讲 高能爆炸后冲击波传播的数值模拟