数学学科Seminar第2303讲 混合幂次之和

创建时间:  2022/10/08  龚惠英   浏览次数:   返回

报告题目 (Title): The sums of unlike powers(混合幂次之和)

报告人 (Speaker): 赵立璐 教授(山东大学)

报告时间 (Time):2022年10月10日(周一) 15:00-16:00

报告地点 (Place):腾讯会议(ID:111 809 982)

邀请人(Inviter):王玉超

主办部门:理学院数学系

报告摘要:In this talk, we consider the expression of all sufficiently large integers as the sum of successive powers, starting with a square, in which the number of variables is as small as possible. It is proved that the underlying equation is solvable in thirteen variables. This improves upon the result of Ford with fourteen instead of thirteen. This is based on a joint work with J. Liu.

上一条:数学学科Seminar第2304讲 相对论欧拉方程组的奇性形成

下一条:上海大学核心数学研究所——几何与分析综合报告第13讲 Kinematic formulas and inequalities for chord power integrals in integral and convex geometry


数学学科Seminar第2303讲 混合幂次之和

创建时间:  2022/10/08  龚惠英   浏览次数:   返回

报告题目 (Title): The sums of unlike powers(混合幂次之和)

报告人 (Speaker): 赵立璐 教授(山东大学)

报告时间 (Time):2022年10月10日(周一) 15:00-16:00

报告地点 (Place):腾讯会议(ID:111 809 982)

邀请人(Inviter):王玉超

主办部门:理学院数学系

报告摘要:In this talk, we consider the expression of all sufficiently large integers as the sum of successive powers, starting with a square, in which the number of variables is as small as possible. It is proved that the underlying equation is solvable in thirteen variables. This improves upon the result of Ford with fourteen instead of thirteen. This is based on a joint work with J. Liu.

上一条:数学学科Seminar第2304讲 相对论欧拉方程组的奇性形成

下一条:上海大学核心数学研究所——几何与分析综合报告第13讲 Kinematic formulas and inequalities for chord power integrals in integral and convex geometry