数学学科Seminar第2300讲 Volterra积分微分方程的h-p连续Petrov-Galerkin方法

创建时间:  2022/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):The h-p version continuous Petrov-Galerkin method for Volterra integro-differential equations (Volterra积分微分方程的h-p连续Petrov-Galerkin方法)

报告人 (Speaker):易利军 教授(上海师范大学)

报告时间 (Time):2022年9月29日(周四) 15:30-17:00

报告地点 (Place):线上腾讯会议 (ID:775 118 787)

邀请人(Inviter):蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we consider an h-p version of the continuous Petrov-Galerkin time-stepping method for linear and nonlinear Volterra integro-differential equations with smooth and non-smooth kernels. We establish a priori error estimates in the L^2 -, H^1- and L^\infty-norm that are completely explicit with respect to the local discretization and regularity parameters. Moreover, we show that exponential rates of convergence can be achieved for solutions with start-up singularities by using geometrically time partitions and linearly increasing polynomial degrees. Numerical experiments are provided to illustrate the theoretical results. This presentation is based on joint works with Prof. Benqi Guo (University of Manitoba).

上一条:数学学科Seminar第2301讲 关于有限指标的量化加权外插及其应用

下一条:数学学科Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性


数学学科Seminar第2300讲 Volterra积分微分方程的h-p连续Petrov-Galerkin方法

创建时间:  2022/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):The h-p version continuous Petrov-Galerkin method for Volterra integro-differential equations (Volterra积分微分方程的h-p连续Petrov-Galerkin方法)

报告人 (Speaker):易利军 教授(上海师范大学)

报告时间 (Time):2022年9月29日(周四) 15:30-17:00

报告地点 (Place):线上腾讯会议 (ID:775 118 787)

邀请人(Inviter):蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we consider an h-p version of the continuous Petrov-Galerkin time-stepping method for linear and nonlinear Volterra integro-differential equations with smooth and non-smooth kernels. We establish a priori error estimates in the L^2 -, H^1- and L^\infty-norm that are completely explicit with respect to the local discretization and regularity parameters. Moreover, we show that exponential rates of convergence can be achieved for solutions with start-up singularities by using geometrically time partitions and linearly increasing polynomial degrees. Numerical experiments are provided to illustrate the theoretical results. This presentation is based on joint works with Prof. Benqi Guo (University of Manitoba).

上一条:数学学科Seminar第2301讲 关于有限指标的量化加权外插及其应用

下一条:数学学科Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性