数学学科Seminar第2298讲 分数阶移动/固定对流-扩散方程方程的LDG方法

创建时间:  2022/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):LDG method for fractional mobile/immobile convection-diffusion equations (分数阶移动/固定对流-扩散方程方程的LDG方法)

报告人 (Speaker): 刘洋 教授(内蒙古大学)

报告时间 (Time):2022年9月29日(周四) 8:30-10:00

报告地点 (Place):线上腾讯会议 (ID:808 276 003)

邀请人(Inviter):蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we introduce an LDG method combined with the generalized BDF2-θ to solve the fractional mobile/immobile convection-diffusion equations, where the temporal direction is approximated by the generalized BDF2-θ and the spatial direction is discretized by the LDG method. We prove the stability for the numerical scheme and derive the rigorous error results that are related to the regularity of the solution. In order to investigate the correctness of the theoretical results and the effectiveness of the algorithm, we provide some numerical tests with Pk (k=1,3) elements for periodic boundary conditions and Pk (k=0,1,2,3) elements for compactly supported boundary conditions. Especially, with a comparison to the numerical scheme without the starting part, the corrected scheme yielded by adding the starting part can restore the second-order convergence rate for nonsmooth problems.

上一条:数学学科Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性

下一条:数学学科Seminar第2297讲 离散方程的约化IV


数学学科Seminar第2298讲 分数阶移动/固定对流-扩散方程方程的LDG方法

创建时间:  2022/09/26  龚惠英   浏览次数:   返回

报告题目 (Title):LDG method for fractional mobile/immobile convection-diffusion equations (分数阶移动/固定对流-扩散方程方程的LDG方法)

报告人 (Speaker): 刘洋 教授(内蒙古大学)

报告时间 (Time):2022年9月29日(周四) 8:30-10:00

报告地点 (Place):线上腾讯会议 (ID:808 276 003)

邀请人(Inviter):蔡敏

主办部门:理学院数学系

报告摘要:In this talk, we introduce an LDG method combined with the generalized BDF2-θ to solve the fractional mobile/immobile convection-diffusion equations, where the temporal direction is approximated by the generalized BDF2-θ and the spatial direction is discretized by the LDG method. We prove the stability for the numerical scheme and derive the rigorous error results that are related to the regularity of the solution. In order to investigate the correctness of the theoretical results and the effectiveness of the algorithm, we provide some numerical tests with Pk (k=1,3) elements for periodic boundary conditions and Pk (k=0,1,2,3) elements for compactly supported boundary conditions. Especially, with a comparison to the numerical scheme without the starting part, the corrected scheme yielded by adding the starting part can restore the second-order convergence rate for nonsmooth problems.

上一条:数学学科Seminar第2299讲 时间分数阶Cahn-Hilliard模型变步长L1型格式的能量稳定性

下一条:数学学科Seminar第2297讲 离散方程的约化IV