数学学科Seminar第2245讲 广义Sturm-Liouville问题的高精特征值

创建时间:  2022/05/24  龚惠英   浏览次数:   返回

报告题目 (Title):广义Sturm-Liouville问题的高精特征值

报告人 (Speaker): 刘进贤 教授(台湾海洋大学)

报告时间 (Time):2022年5月25日 (周三) 14:00-15:00

报告地点 (Place):腾讯会议:会议号:525-690-015 (密码:123456)

邀请人(Inviter):刘东杰 教授

主办部门:理学院数学系

报告摘要:

The eigenvalues are solved by a new iterative algorithm based on a derivative-free iterative method for the generalized Sturm-Liouville problem, of which two unknowns involved a missing initial value and the eigenvalue are to be determined. The eigen-parameter dependent boundary shape functions are adopted to transform the generalized Sturm-Liouville problem to an initial value problem for a new variable, whose initial values are given. The uniqueness condition of the eigenfunction is used to obtain the terminal values of the new variable, such that only the eigenvalue appears in the new formulation. The eigen-parameter dependent boundary condition on the right-end is used to derive an implicit and numerical characteristic equation, which can be solved to obtain highly precise eigenvalues. Numerical tests confirm that the proposed iterative algorithm is accurate to find the eigenvalues quickly.

上一条:数学学科Seminar第2246讲 G-布朗运动驱动的随机微分方程中几个问题的探讨

下一条:上海大学核心数学研究所——几何与分析综合报告第5讲 On Monge–Ampère type fourth order equations


数学学科Seminar第2245讲 广义Sturm-Liouville问题的高精特征值

创建时间:  2022/05/24  龚惠英   浏览次数:   返回

报告题目 (Title):广义Sturm-Liouville问题的高精特征值

报告人 (Speaker): 刘进贤 教授(台湾海洋大学)

报告时间 (Time):2022年5月25日 (周三) 14:00-15:00

报告地点 (Place):腾讯会议:会议号:525-690-015 (密码:123456)

邀请人(Inviter):刘东杰 教授

主办部门:理学院数学系

报告摘要:

The eigenvalues are solved by a new iterative algorithm based on a derivative-free iterative method for the generalized Sturm-Liouville problem, of which two unknowns involved a missing initial value and the eigenvalue are to be determined. The eigen-parameter dependent boundary shape functions are adopted to transform the generalized Sturm-Liouville problem to an initial value problem for a new variable, whose initial values are given. The uniqueness condition of the eigenfunction is used to obtain the terminal values of the new variable, such that only the eigenvalue appears in the new formulation. The eigen-parameter dependent boundary condition on the right-end is used to derive an implicit and numerical characteristic equation, which can be solved to obtain highly precise eigenvalues. Numerical tests confirm that the proposed iterative algorithm is accurate to find the eigenvalues quickly.

上一条:数学学科Seminar第2246讲 G-布朗运动驱动的随机微分方程中几个问题的探讨

下一条:上海大学核心数学研究所——几何与分析综合报告第5讲 On Monge–Ampère type fourth order equations